
DEPT OF COMPUTER SCIENCE R P COOK ET AL OCT 87
UVA/525418/CS8,'iei UGS844-86-K-8245

UNCLASSIFIED F/G 12/5 NL

E llEEllEEliIEm..'.I

~ 1j 32 2.2
L

k. 111,g 1 2.0

21 5 1. A 1.

~ 16.T_

A Semi-Annual Progress Report

Contract No. N00014-86-K-0245
March 1, 1987 - September 1, 1987 0 fill CO

THE STARLITE PROJECT

Dr. Applied Math and Computer Science

Dr. James G. Smith, Program Manager, Code 1211

Computer Science Division
Dr. Andre van Tilborg, Scientific'Officer, Code 1133

I% Submitted to:

Directorn Naval Research Laboratory
Washington, D.C. 20375

to Attention: Code 2627
00

Submitted by:

R. P. Cook
Associate Professor and Chairman

S. H. Son
Assistant Professor

Report No. UVA/525410 "CS88 101

I September 1987 DTIC

SCHOOL OF ENGINEERING AND

APPLIED SCIENCE
DrErRBUTION S7A!TMENT A

-Approved for puH. - I

DEPARTMENT OF COMPUTER SCIENCE

rUNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22901

4 A 87 10o8 u09

A Semi-Annual Progress Report
Contract No. NOO014-86-K-0245

March 1, 1987 - September 1, 1987

ITHE STARLITE PROJECT

Applied Math and Computer Science
Dr. James G. Smith, Program Manager, Code 1211

Computer Science Division
Dr. Andre van Tilborg, Scientific Officer, Code 1133

Submitted to:

Director
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

Submitted by:

R. P. Cook
Associate Professor and Chairman

S. H. Son
Assistant Professor

Department of Computer Science

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA Aeoaion For

CHARLOTTESVILLE, VIRGINIA NTIS (Mal

DTrC TAB0
Uuannounced., Justi ficat ion

Distribution/

Availability Codef
}Avail and/or

T~ist special

%o. VA\/L5410/CS88/ 101 Copy, No.4
S,.pt,,mh.,r 1987

V.

UN CLASS IFIED
SECURAiT'fCLASSIFICATION OFTHIS =PAG

J REPORT DOCUMENTATION PAGE

K JIa. rEPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKN ~i ~casiidINn

2a. SECURITY CLASSIFICATION AUTHORITY DISTRIBUTION AILA8ILI TY CF, REFC..ar
Approved for Public Release; Distribution

2b. OECLASSIFICATION /DOWNGRADING SCHEDULE 1Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMIBERtS)

UVA/525410/CS88/101
Ea. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of Virginia (It 'appficable) Office of Naval Research Resident

Department of Computer Science Representative
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

*,orton all818 Connecticut Ave., N.W., Eighth Floor

Charlottesville, VA 22901 Washington, DC 20006

8a. NAME OF FUNDING /SPONSOIRING 8 b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUJMBER
ORGANIZATION I(If applicable)

Office of Naval Research I.________IN00014-86-K-0245
ac. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

80NQunyStreet PROGRAM PROJECT ITASK 'WORK UNIT
Arlington, Virginia 22217-5000 ELEMENT NO. NO. NO. ACCESSION NO.i

11. TITLE (include Security Classirication)

~Th e Starlite Project

12 PERSONAL AUTHOR(S)

R. P. Cook; S. H. Son
13a. TYPE OF REPORT 13b. TIME COVERED 114.DATE OF REPORT (Year, Month. Day) 15 . PAGE COUNT

Semi-Annual Progress I FROM318 T09LI/87 Otber18
16. SUPPLEMENTARY NOTATION

I.COSA.Ti CODES la. SUBJEC-T TERMS (Continue on reverse of necessary and identify by block number)

FIELD GROUP SUB-GROUPI

I~ AaSTRACT (Continue on reverie if necessary and identify by block number)

The StarLite Project has the goal of constructing a program library for real-time applicat-
ions. The initial focus Of the project is on operating system and database support. The
project also involves the construction of a prototyping environment that supports
experimentation with concurrent and distributed algorithms in a host environment before
down-loading to a target system for performance testing.

The components of the project include a MIodula-2 compiler, a symbolic MIodula-2 debugger, an
i rte h reter/ runltimp. package, the Phoenix operating system, the meta-file system, a visual
',imulation package, a database system, and documentation.

20 b1STPI'3U rON/AVAILA8ILITY OF ABSTRACT 121 A r3STRACT SECURITY CL.ASSIFICATION

9. ':%LASSIFIEWiUNLIMITED 0 SAME AS RPT C DT~C USERSI Unclassified
Za NAM oP RESPONSIBLE NDIVIDUAL 22b I ELLEPHONE (Includo Arpa Cooel I2C U) ICE YBOL4

D.IJame'; G. Smith ?02f2-6Q6-4713I
DO FORM 1473,84 MAR 63 Adi4 edition mnay oe usea urtil exnaustea SECURITY CLASSIFiCATION O_ TIS PAGE

All oth~er editions are oosolete
* INCLAS SI F IED

TABLE OF CONTENTS

Page

1. Introduction to the StarLite Project.....................1

2. Student Participation....................................2

3. Publications..2

4. Operating Systems 5

5. The StarLite Programming Environment.....................6

6. The Meta-File System.....................................8

7. Database Systems..9

7.1 Algorithms for Synchronization and Recovery ... 9

7.2 Development of a Message-Based Simulator............11

1. Introduction to the StarLite Project

It seems improbable that a single operating system will suffice to solve all the application problems

%i that are likely to arise in future real-time systems. A much more likely scenario is that future engineers,

with support from a programming environment, will select and adapt modules from program libraries.

The selected modules must have proven operating characteristics and the domain over which they are

applicable must be well-defined.

The StarLite Project, supported by the Office of Naval Research, has the goal of constructing such a

program library for real-time applications. The initial focus of the project is on operating system and

database support. The project also involves the construction of a prototyping environment that supports

experimentation with concurrent and distributed algorithms in a host environment before down-loading to

a target system for performance testing.

The components of the project include a Modula-2 compiler, a symbolic Modula-2 debugger, an

interpreter/runtime package, the Phoenix operating system, the meta-file system, a visual simulation

package, a database system, and documentation. The database system is the responsibility of Professor

Son. The remaining components are the responsibility of Professor Cook. Figure 1 gives a historical

review of progress to date on each component of the StarLite project and also outlines our future plans.

Each component is discussed in more detail in later Sections.

The module libraries for the database system and Phoenix are being implemented in Modula-2. The

* target hardware is currently PC-compatibles, but the library will also be ported to other architectures,

including the Motorola 68000 architecture. The prototyping environment is being developed for PCs and

Sun workstations. While Modula-2 has been chosen as the implementation language for our experiments.

there are no Modula-2 dependencies in the program library. It is intended that the library be easily port-

able to other languages.

The research includes a systematic analysis of the functional and operational characteristics of the

library modules. Such an analysis often pays extra dividends by exposing operational environments in
p.

-1

which none of the extant algorithms work; thus, the result is research focused towards the solution of par-

ticular problems. This can be contrasted with the popular approach of selecting problems that can be

solved, but which are not useful.

2. Student Participation

The following students participated in the StarLite project over the last six months. Some were sup-

ported by the contract, others contributed as the result of class projects.

Jim Brown(B.S. student), visual simulation package

Richard Crowe(M.S. student), file system development

Bill Dixon(B.S. student), symbolic debugger

Lori Fitch(M.S. student), compiler development

David Kaminsky(B.S. student), graphics routines

Yumi Kim(M.S. student), multi-version database synchronization

U Jeremiah Ratner(M.S. student), database development

Richard Testardi(Ph.D. student), compiler and operating system development

Jenona Whitlach(Ph.D. student), Meta-File System Development

Nancy Yeager(M.S. student), Meta-File System Development

3. Publications

* Refereed Journal Publications

(1) Son, S.H., Synchronization of Replicated Data in Distributed Systems, Information Systems, Vol.
,9 12, No. 2, 1987, pp 191-202.

(2) Son, S.H., On Multiversion Replication Control in Distributed Systems, Computer Systems Science
and Engineering. Vol. 2, No. 2, April 1987, pp 76-84.

(3) Son, S.H., Using Replication to Improve Reliability in Distributed Information Systems, Informa-
tion and Software Technology, October 1987 (to appear).

(4) Cook, R.P., An Empirical Analysis of the Lilith Instruction Set, IEEE Transactions on Computers,
(to appear).

.2.

r Cyr

UMM11 WIN

gela~

.440

to aa -

r
o~o~ 4

MCA

.=C"

>- a

- 7S

CIOJ Z

ro~.

-0~ - e~C

Lo- ~ ~ .

0CwC

I7

e

2 2 -

2E
0.3 C6.

v~ ~

o~o z=~ 0-
L6 U .3

.xj<
;iL~ z 2 -

- A.

* Conference Publications

(5) Cook, R.P. and R.J. Auletta, StarLite, A Visual Simulation Package for Software Prototyping, ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, (Dec. 1986); also SIGPLAN Notices 22, 1(Jan. 1987).

(6) Cook, R.P., StarLite, A Network-Software Prototyping Environment, ACMIIEEE Symposium on
the Simulation of Computer Networks, (August 1987).

(7) Son, S.H., Reliable Distributed Database Systems, Proceedings of ACM Computer Science Confer-
ence, St. Louis, Missouri, February 1987.

(8) Son, S.H., Replication Control and Recovery in Distributed Systems, Proceedings of IEEE
Southeastcon, Tampa. Florida, April 1987.

(9) Son, S.H., A Synchronization Scheme for Replicated Data in Distributed Information Systems,
Proceedings of IEEE Symposium on Office Automation, Gaithersburg, Maryland, April 1987.

(10) Cook, R.P. and S. H. Son, The StarLite Project, Proceedings of Fourth IEEE Workshop on Real-
Time Operating Systems, Cambridge, Massachusetts, July 1987.

(11) Son, S.H., A Recovery Scheme for Database Systems with Large Main Memory, Proceedings of
11th International Computer Software and Applications Conference (COMPSAC 87), Tokyo,
Japan, October 1987 (to appear).

(12) Son, S.H., Using Replication for High Performance Database Support in Distributed Real-Time
Systems, 8th Real-Time Systems Symposium, San Jose, California, December 1987 (to appear).

(13) Son, S.H., An Adaptive Scheme for Checkpointing and Recovery in Distributed Databases with
Mixed Types of Transactions, Fourth International Conference on Data Engineering, Los Angeles,
California, February 1988 (to appear).

* Technical Reports

(14) Son, S.H., Using Replication to Improve Reliability in Distributed Information Systems, Technical
Report TR-87-16, Dept. of Computer Science, University of Virginia, August 1987.

(15) Son, S.H., Using Replication for High Performance Database Support in Distributed Real-Time
Systems, Technical Report TR-87-17, Dept. of Computer Science, University of Virginia, August
1987.

4. Operating Systems

There are two views of operating systems. The traditional view treats an operating system as a
monolithic entity that owns all low-level resources, such as memory, devices, CPUs. In the second view,
an operating system is simply a collection of modules with certain properties. The modules are "bound"
to the application program to form a single, larger program that solves a particular problem. We favor the
latter view as it is consistent with our modular programming approach to real-time systems. It is also
consistent with the notion of single-language programming environments, such as those being developed
for Ada.

..

U

In a modular operating system, the implementation of a module can be replaced without affecting
the module's interface. Thus, it should be possible to construct an operating systems generator, which
when given a requirements specification and a target machine description, could produce a set of modules
meeting the specification. Judging from experience in the compiler area, such a generator will only be
possible if a set of suitable modules can be agreed upon.

Another area of investigation concerns real-time, full-function operating systems. Implementation
technology needs to be "pushed" to determine the costs of providing additional functionality in terms of
the potential effects on real-time guarantees. In some cases, an engineer might opt for increased func-
tionality, even if response time were degraded or could only be expressed in probabilistic terms. The
StarLite module library currently includes a partial UNIX implementation, Phoenix, which we are
currently testing to determine its real-time performance limits. Figure 2 illustrates the current module
dependency matrix for the operating system.

The dependency matrix indicates the hierarchical nature of the module library. For example, the
Atomic module is used to build SEMAPHORE, SEMAPHORE is used to build MONITOR and CONDI-
TION, and then they are used to build Phoenix. The module names "in caps" are type modules. A

V hierarchical structure is desirable because it enhances the reusability of the component modules.

In addition to having a hierarchical organization, the Phoenix system has a number of other interest-
ing properties. First, the Atomic module contains the only code in the system that disables interrupts.
Furthermore, the worst-case disable time. is only a few instructions. Thus, the response time to interrupts
is fixed and very small. This can be contrasted to the majority of UNIX implementations in which dis-
abled sections of code can run for many milliseconds. Another attribute of Phoenix is that it is designed
to operate in either a multi- or uru-processor environment. For example, the use of the Monitor data type
is particularized to data instances, not code modules. As a result, it is possible for an arbitrary number of
processes to execute kernel code simultaneously. Again, this is quite different from most UNIX imple-
mentations. As a final point, the Phoenix implementation is object-based. The main advantage is that the
User structure, which represents user-level processes, can be modified arbitrarily without necessitating a
recompilation of the entire operating system. Again, this is an improvement over existing implementa-
tions.

5. The StarLite Programming Environment

The StarLite programming environment consists of a Modula-2 one-pass compiler, a symbolic
debugger, interpreter, and simulation package. The goal is to produce a portable, standard environment
with which researchers can develop real-time concurrent and distributed software. Furthermore, by using
the environment, researchers at one university will be able to validate the experiments performed at other
universities. This Section describes in more detail the progress-to-date of each component (refer to Fig-
ure 1).

The compiler supports the Revised Modula-2 Language Definition, except for the
4LONGREAL/CARD types; LONGINT is supported. Its compilation speed is twice as fast as the Logi-

tech 286 compiler and five times as fast as the SUN-3 Modula-2 compiler. It also compiles faster than
either the MicroSoft C compiler on a PC286 or the SUN-3 C compiler. Fast compilation has been rated
as essential to the success of a programming environment (see, for example, Xerox CSL-80-10).

The compiler is currently implemented in Modula-2, but we are also creating a version in C so that
the entire environment can be easily ported to new architectures. The generated code is for a 32-bit vir-
tual architecture(S-code) that is designed to be extremely space efficient. For example, the object code
sizes for a program consisting of 1,000 assignment statements was SUN-Modula(130K), SUN-C(65K),
PC286-C(35K), PC286-StarLite(l 1K). Compact code has a significant effect on the speed with which the
environment can load both system components and user-level programs that might run on those com-
ponents. Code generators for a number of target environments are planned for the future.

-6-

.I ... -I

-~------ --------- -- - -S~M'fr

X z
- - -- - - - w

I,>e,

a -x - - a

- - -

W z
- a - a a a

_ _ _ _ _ _ XXC
a a - - a a

< ZX
aA -A

Z 4

-4 a a a N

The interpreter/runtime system for StarLite is unique in a number of respects. First, it supports
dynamic linking; that is, modules are loaded at the point that one of their procedures is called. Thus, a

Slarge software system begins execution very quickly and then loads only the modules that are actually
tested. At the current time, a linker is superfluous; as soon as a module is compiled, it may be executed.
The second feature of the interpreter is that it maximizes sharing. There will be only one copy of shared
code no matter how many times it is used at either the user or operating system levels. Next, the clocks
on the interpreter's virtual machines are driven by the number of S-code instructions executed. Thus,
timings for the StarLite host environment can be used to approximate those in a target environment by
varying the ratio of S-code instructions necessary for a clock tick. Finally, the interpreter is designed to
support a number of different execution models. The present model is a traditional uniprocessor, but we
have plans for a shared-memory multiprocessor model and a distributed systems model. For example, an
experiment might consist of a file server, name server, and client node all running on top of the base inter-
preter system. If all three nodes were implemented using the same base operating system, the environ-
ment would store only one copy of the code; however, each node would require its own data area.

The visual simulation package[5,6] incorporates many of the features of the GPSS simulation
language. The traditional "delay" function is provided, as well as the Store and Table simulation types
that are used for statistics gathering. Typically, the presence of simulation code is isolated at the lowest
levels of a system. By keeping interfaces compatible, a simulation module can be replaced by a module
for the target machine. Thus, the higher levels of the software hierarchy remain unchanged when moving
code from the host environment to a target.

In addition to the simulation entities, a window interface is provided to allow a user in the host
environment to "view" the state of the system dynamically. The current device library includes EtherNet,
clock, and disk modules. We hope to add additional modules for optical disks, token rings and token
busses. Another goal for the future is to support hybrid execution in which parts of a system run on the
target and parts run in the host environment.

The visual simulation capability is also important in the area of software documentation. For exam-
ple, by recording window activity, the software developer can produce an animated document of impor-
tant system attributes.

The final component of the StarLite environment is the symbolic debugger. It is being developed so
that it can be used as either an interactive or post-mortem debugger. Also, it has the capability to exam-
ine multiple threads of control. Eventually, we will add support for user-defined "views" of data abstrac-
tions and the ability to view data other than program images. For example, the debugger could be used to
examine, or modify, a file that was described in the Modula-2 Interface Definition Language, which is
supported by the compiler.

" In summary, the StarLite environment is designed to maximize productivity. Therefore, it
accelerates a researcher's ability to conduct experiments, which advances the state-of-the-art.

6. The Meta-File System The meta-file system is designed to be a national standard. It has two proper-
ties that support that goal. First, it is extensible; new access methods can be defined dynamically. Access
methods are bound to the meta-file system kernel by means of dynamic linking and up-level calls.
Secondly, it is Parnas transparent; that is, the states and efficiency of the underlying disk mechanism are
made available to the application programmer. This can be contrasted with UNIX, which is extensible,
but new access methods cannot manipulate the disk directly. For example, a user is not allowed to create
an index block.

U Obviously, before proposing any kind of standard, we intend to perform a significant amount of
experimentation to determine the suitability of our design. We are currently implementing a UNIX inter-

.. face that runs with the meta-file system kernel. Once it is complete, we will do performance testing to
validate our "execution transparency" claim.

-8-

7. Database Systems
Distributed systems with real-time constraints must maintain high reliability, which is the ability of

the system to maintain consistency and to provide continued service in spite of failures. Several actions
may result in inconsistent system states. Incorrect synchronization and system failures are two of them. It
is rather straightforward to achieve only the requirement of consistency, for example, by shutting down
the entire system when a failure occurs. However, this approach is not acceptable for distributed real-time
systems that require high reliability as well as high availability. Therefore, when developing a distributed
system, all important factors, such as performance and resiliency, must be taken into consideration. One

p of the primary reasons for the difficulty in successfully designing and evaluating a distributed system is
that it is very complicated and it takes a long time and huge effort to actually develop a system before it
can be evaluated. In many cases, developing a distributed real-time system requires a concerted effort for
solving problems associated with many different components of the system, including process schedul-
ing, synchronization, and failure recovery.

High reliability is not the only requirement for real-time systems. Since real-time systems typically
require access to large volumes of data within a certain time limit (deadline), developing a highly reliable
real-time system needs to have very powerful access and processing mechanisms for large volumes of
data. Therefore, it is clear that the database systems for such real-time applications must provide a very
high throughput. A relatively low throughput provided by the database systems based on conventional
control mechanisms may not be able to support such a high performance requirement.

In a distributed real-time system, data can be stored at several sites. The proliferation of worksta-
tions and personal computers makes data distribution and replication attractive because one way of

"- improving the availability of data in a system with unreliable sites is to replicate the data and store it at
* multiple sites. A single site failure does not make replicated data inaccessible; the system can access the

data in the presence of failures, even if some of the redundant copies are not available. In addition to
improved availability, data distribution and replication also enhance performance by placing the data
closer to the process that requires it. For example, queries initiated at sites where the data are stored can
be processed locally without incurring communication delays, and the workload of queries can be distri-
buted to several sites where the subtasks of a query can be processed concurrently. However, the benefits
of data distribution and replication must be balanced against the additional cost and complexities intro-
duced for the synchronization of replicated and distributed data.

Our research effort during February 1987 to August 1987 was concentrated in two areas: designing
algorithms for synchronization and recovery, and developing a message-based, discrete-event simulator
for evaluating database support mechanisms. The research has resulted in the development of a set of
database support algorithms for synchronization, replication control, and system recovery. Simulator
development was initiated in June, and most of the basic procedures have been implemented.

7.1. Algorithms for Synchronization and Recovery
An obvious approach to improve reliability of critical data in a distributed environment is to keep

replicated copies of data at several sites. A major restriction in using replication is that replicated copies
must behave like a single copy, i.e., mutual consistency of a replicated data must be preserved. The prin-

" -. cipal goal of a replication control mechanism is to guarantee that all updates are applied to copies of
replicated data in a way that preserves mutual consistency. The task of synchronization in a distributed
environment is more complicated than that in a centralized environment mainly because the information
used to make scheduling decisions is itself distributed, and it must be managed properly to make correct
decisions.

Partial operation policies for replicated data are critical in maintaining correctness and achieving the
high reliability of the system. To achieve high reliability, the system must allow user requests to be pro-
cessed even when network partitioning occurs. Two alternatives are possible when a partition occurs:

(I) pessimistic: allow at most one group to process transactions,

.9-

"'-' (2) optimistic: allow each group to process transactions.
Neither of the two alternatives is superior to the other. An optimistic approach may achieve high availa-Ubility while partition failures exist. However, it may be penalized during recovery by the overhead in
merging different execution orders of updates committed at several partitions into a correct schedule.
Moreover, the system predictability would be severely impaired if some transactions should be backed
out which violate consistency constraints. In each partition, different algorithms may be used for replica-
tion control and synchronization. Two major techniques for managing replicated data are voting and spe-
cial copy. In voting-based schemes, each copy has a number of votes, and a predetermined number of

Wvotes is necessary to perform a desired operation. In the special copy approach, availability of a special
copy (or any copy) enables an operation on the data object. Each partial operation policy and replication
control technique has its own benefits and costs. We have classified different replication control tech-
niques by their underlying mechanisms and the type of information they use in ordering the transac-
tions[11. The trade-offs between performance and reliability of several database support mechanisms have
been evaluated[8]. We will expand our work by including predictability as another important measure for
the evaluation of database support mechanisms. The results of this study will provide a clear understand-
ing of different partial operation policies with their costs and benefits in quantitative measures, which
would be very helpful for real-time system designers.

In addition, we have developed database support mechanisms for integrated concurrency and repli-
cation control. Our mechanisms can be considered as a compromise between voting and special copy
approaches[91. The mechanisms are extended either by using multiple versions of data[21, or by using the
semantic information of transactions[12]. The preliminary results indicate that these mechanisms are
promising for distributed real-time systems because they increase the degree of concurrency by exploiting
the old-values, that are maintained in the system for recovery reasons. This idea of integrated concurrency
and replication control in distributed environments will be further studied in this project to verify their
correctness and to evaluate their performance/reliability characteristics.

Recovery is another critical requirement for real-time systems. Database recovery essentially con-
sists of two parts: preparation for recovery by saving necessary information during normal operation of
the system, and actual recovery after failure. We have developed a recovery scheme using a non-
interfering checkpointing mechanism[11). Instead of waiting for a consistent state to occur, the non-
interfering checkpointing approach constructs a state that would result by completing the transactions that
are in progress when the global checkpoint begins. Users are allowed to submit transactions while the

Icheckpointing is in progress, and the transactions are executed in the system concurrently with the check-
pointing process. Two main properties of this checkpointing algorithm are global consistency and
reduced interference, both of which are essential for achieving high availability.

Non-interfering checkpointing mechanisms. however, may suffer from the fact that the diverged
computation needs to be maintained by the system until all of the transactions that are in progress when
the checkpoint begins, come to completion. For database systems with many long-lived transactions that
need long execution time, this requirement of maintaining diverged computation may make non-

- interfering checkpointing not practical. We have developed a checkpointing algorithm that is non-
interfering with transaction processing, and efficiently generates globally consistent checkpoints[13]. The
algorithm also prevents the well-known "domino effect", and saves intermediate results of the transaction,
in an adaptive manner.

Several problems related to the idea of a non-interfering checkpoint and associated backward
. recovery mechanisms have not been investigated in depth so far. One of them is the robustness of the

mechanisms to failures during checkpointing or the recovery process, and to severe failures like network
partitioning. Most checkpointing and recovery mechanisms proposed in the literature assume no failures
during the execution of the mechanisms. This assumption is based on the expected low probability of

-, failures during the execution. However, an inconsistent state would result if a failure occurs at some
unfortunate instant of time, unless the mechanisms are designed to manage such failures.

'p" -10-

Other problems of checkpointing and recovery mechanisms are related to the efficient implementa-
tion and performance characterization. The practicality of non-interfering checkpointing depends partially
on the amount of extra workload incurred by the checkpointing mechanism. We will evaluate the real-
time performance characteristics of checkpointing and recovery mechanisms using the message-based
simulation software described in the next section.

7.2. Development of A Message-Based Simulator
Although there already exist numerous tools for system development and analysis, only a few of

them are really useful for system designers. If the designer must deal with message-passing distributed
.,. - systems and tight real-time constraints, it is essential to have an appropriate simulation software for the

success in the design and analysis tasks.
Message-based simulations, in which events are message-communications, do not provide addi-

tional expressive power over standard simulation languages message-passing can be simulated in many
discrete-event simulation languages including SIMSCRIPT and GPSS. However, a message-based simu-
lation can be used as an effective tool for developing a distributed system because the simulation "looks"
like a distributed program, while a simulation program written in a traditional simulation language is
inherently a sequential program. Furthermore, if the simulation program is developed in a systematic way
such that the principles of modularity and information hiding are observed, most of the simulation code
can be used in the actual system, resulting in a reduced cost for system development and evaluation. The
few primitives required for message-based simulations are constructs to create and terminate processes, to
send and receive messages between processes, and to block a process for messages and/or simulation time
to elapse. In our simulation software, these primitives are based on the concurrent programming kernel
developed as part of the StarLite operating system. The simulation is implemented in Modula-2 on a
SUN-3 workstation.

For a message-based simulation, the process view of simulation has been adopted. A distributed
system consists of a number of processes that interact with others at discrete instants of time. Processes
are basic building blocks of a simulation program. A process is an independent, dynamic entity that mani-
pulates resources to achieve its objectives. A resource is a passive object and may be represented by a
simple variable or a complex data structure. A simulation program models the dynamic behavior of
processes, resources, and their interactions as they evolve in time. Each physical operation of the system
is simulated by a process, and the process interactions are called events.

We use the client/server paradigm for process interaction in our model. The system consists of a set
of clients and servers, which are processes that cooperate for the purpose of transaction processing. Each
server provides a service to the clients of the system, where a client can request a service by sending a
request message (a message of type request) to the corresponding server. The computation structure of
the system to be modeled can be characterized by the way clients and servers are mapped to processes.
For example, a server might consist of a fixed number of processes, each of which might execute the
requests of every transaction, or it might consist of a varying number of processes, each of which exe-
cutes on behalf of exactly one transaction.

The internal actions of a process, i.e., actions that do not involve interactions with other processes in
the system, are modeled either by the passage of simulation time or by the execution of sequential state-
ments within the process. We use a simulator clock to represent the passage of time in a simulation. The
simulator clock advances in discrete steps, where each step simulates the passage of time between two
events in the system.

In a physical system, each process makes independent progress in time, and many processes execute
in parallel. In a simulation, the multiple processes of a physical system must be executed simultaneously
on one processor. This simultaneity is achieved by interleaving the execution of different processes and
executing them in a quasi-parallel fashion. A scheduling primitive, PauseProcess, is provided to guaran-
tee quasi-parallel processing and finite progress for all active processes.

-11.

h . In message-based simulations, the communication of a message takes zero units of simulation time.
For instance, in transaction execution we may assume that the time taken for sending a message to a des-
tination process is insignificant; thus, in the simulation, the transmission time for the message that models
this event can be zero. However, nonzero transmission delays exist in distributed systems, and they can
be modeled by causing the process sending (or receiving) a message to wait for a certain time correspond-
ing to the message-transmission time before (or after) sending (or receiving) the message.

Performance comparisons of synchronization algorithms have been carried out by several research-
ers using simulation and analytical models. However, there are important issues that have received little
consideration in previous studies:
(1) Most of the previous modeling studies considered only the performance of synchronization algo-

nthms in a single processor system. Few studies have addressed distributed environments.
(2) Since synchronization algorithms must work correctly even with subsystem failures, performance

and reliability characteristics of synchronization algorithms in degraded circumstances need to be
studied.

(3) Although message-based simulations appear to be more natural for simulating distributed systems. a
message-based approach to discrete-event simulation of distributed systems has not been fully
developed.
An evaluation based on a combination of performance characterization and modeling studies seems

S, necessary in order to understand the impact of synchronization algorithms on the performance of distri-
buted systems. In fact, performance measurement or a detailed simulation is the only way to obtain values
for many of the parameters used in analytic modeling studies.

Although our primary goal in using the StarLite environment is the design and evaluation of syn-
chronization algorithms and recovery mechanisms for distributed systems, the development of network
operating system kernels or other application software, such as network mail servers, could also benefit
from StarLite.

-12-

of P9r

DISTRIBUTION LIST

Copv No.

1 - 6 Director
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

7 Dr. James G. Smith, Code 1211
Applied Math and Computer Science Division
800 N. Quincv Street

Arlington, VA 2217-5000

- lh'Detense Technical In format ion Center, S 47031
Bldig. 5, Cameron Station
Alexindria, VA 22314

- r r- 22 R. P. Cook, CS

23 -2-. S. H. Sonl, CS

2 ~ - 2~ E. Hi. Pancake, Clark Hall

27 SEAS Publications Files

Office of Naval Research ResidentS Representativye
818 Connecticut Ave., N.W.
Eighth Floor

P: Washington, D.C. 20006

Attention: Mr. Michael McCracken
Administrative Contracting
Officer

Send Copy of Co,er Letter Only

JO,': 03 h6: t lb

C - C C A

iI

I

UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate

enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There
are 150 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties.
-These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical

and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering,
Materials Science. Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer
Science. Within these disciplines there are well equipped laboratories for conducting highly specialized
research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time

student enrollment of about 16,400), also offers professional degrees under the schools of Architecture,
Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College
of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant
to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the basic goals of education, research, and public service.

I2-
.

J

* I

S

Ii

S

0

I

0

$ 1K
0

p. - -

